33 research outputs found

    Tight Lower Bound on Equivalence Testing in Conditional Sampling Model

    Full text link
    We study the equivalence testing problem where the goal is to determine if the given two unknown distributions on [n][n] are equal or ϵ\epsilon-far in the total variation distance in the conditional sampling model (CFGM, SICOMP16; CRS, SICOMP15) wherein a tester can get a sample from the distribution conditioned on any subset. Equivalence testing is a central problem in distribution testing, and there has been a plethora of work on this topic in various sampling models. Despite significant efforts over the years, there remains a gap in the current best-known upper bound of O~(loglogn)\tilde{O}(\log \log n) [FJOPS, COLT 2015] and lower bound of Ω(loglogn)\Omega(\sqrt{\log \log n})[ACK, RANDOM 2015, Theory of Computing 2018]. Closing this gap has been repeatedly posed as an open problem (listed as problems 66 and 87 at sublinear.info). In this paper, we completely resolve the query complexity of this problem by showing a lower bound of Ω~(loglogn)\tilde{\Omega}(\log \log n). For that purpose, we develop a novel and generic proof technique that enables us to break the loglogn\sqrt{\log \log n} barrier, not only for the equivalence testing problem but also for other distribution testing problems, such as uniblock property

    New Extremal Bounds for Reachability and Strong-Connectivity Preservers Under Failures

    Get PDF
    In this paper, we consider the question of computing sparse subgraphs for any input directed graph G=(V,E)G=(V,E) on nn vertices and mm edges, that preserves reachability and/or strong connectivity structures. We show O(n+min{Pn,nP})O(n+\min\{|{\cal P}|\sqrt{n},n\sqrt{|{\cal P}|}\}) bound on a subgraph that is an 11-fault-tolerant reachability preserver for a given vertex-pair set PV×V{\cal P}\subseteq V\times V, i.e., it preserves reachability between any pair of vertices in P{\cal P} under single edge (or vertex) failure. Our result is a significant improvement over the previous best O(nP)O(n |{\cal P}|) bound obtained as a corollary of single-source reachability preserver construction. We prove our upper bound by exploiting the special structure of single fault-tolerant reachability preserver for any pair, and then considering the interaction among such structures for different pairs. In the lower bound side, we show that a 2-fault-tolerant reachability preserver for a vertex-pair set PV×V{\cal P}\subseteq V\times V of size Ω(nϵ)\Omega(n^\epsilon), for even any arbitrarily small ϵ\epsilon, requires at least Ω(n1+ϵ/8)\Omega(n^{1+\epsilon/8}) edges. This refutes the existence of linear-sized dual fault-tolerant preservers for reachability for any polynomial sized vertex-pair set. We also present the first sub-quadratic bound of at most O~(k2kn21/k)\tilde{O}(k 2^k n^{2-1/k}) size, for strong-connectivity preservers of directed graphs under kk failures. To the best of our knowledge no non-trivial bound for this problem was known before, for a general kk. We get our result by adopting the color-coding technique of Alon, Yuster, and Zwick [JACM'95]

    Approximate Online Pattern Matching in Sublinear Time

    Get PDF

    Sparse Weight Tolerant Subgraph for Single Source Shortest Path

    Get PDF
    In this paper we address the problem of computing a sparse subgraph of any weighted directed graph such that the exact distances from a designated source vertex to all other vertices are preserved under bounded weight increment. Finding a small sized subgraph that preserves distances between any pair of vertices is a well studied problem. Since in the real world any network is prone to failures, it is natural to study the fault tolerant version of the above problem. Unfortunately, it turns out that there may not always exist such a sparse subgraph even under single edge failure [Demetrescu et al. \u2708]. However in real applications it is not always the case that a link (edge) in a network becomes completely faulty. Instead, it can happen that some links become more congested which can be captured by increasing weight on the corresponding edges. Thus it makes sense to try to construct a sparse distance preserving subgraph under the above weight increment model where total increase in weight in the whole network (graph) is bounded by some parameter k. To the best of our knowledge this problem has not been studied so far. In this paper we show that given any weighted directed graph with n vertices and a source vertex, one can construct a subgraph of size at most e * (k-1)!2^kn such that it preserves distances between the source and all other vertices as long as the total weight increment is bounded by k and we are allowed to only have integer valued (can be negative) weight on edges and also weight of an edge can only be increased by some positive integer. Next we show a lower bound of c * 2^kn, for some constant c >= 5/4, on the size of such a subgraph. We further argue that the restrictions of integral weight and integral weight increment are actually essential by showing that if we remove any one of these two we may need to store Omega(n^2) edges to preserve the distances

    Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time

    Full text link
    Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Andoni, Krauthgamer and Onak (2010) gave a nearly linear time algorithm that approximates edit distance within approximation factor poly(logn)\text{poly}(\log n). In this paper, we provide an algorithm with running time O~(n22/7)\tilde{O}(n^{2-2/7}) that approximates the edit distance within a constant factor
    corecore